skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The mass transport in confined geometry in a paddle plating cell is studied using numerical simulation with an attempt to extrapolate an explicit correlation to understand the transport physics and to predict the electrodeposition rate of metal microstructures. A moving boundary in conjunction with mapped mesh is used to allow the reciprocating movement of the flow. A correlation is obtained based on a generalized additive model using multivariant linear regression. Neural networks are also used to analyze the efficacy of such correlation and to determine the descriptor characterizing the error in prediction. A two-step convectional mass transport process, one in the bulk electrolyte outside the patterns and the other inside the micro-trenches, is demonstrated to better describe the overall transport physics and improve the correlation. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2025
  3. Tin (Sn) films are electrodeposited on Au seed layers for the investigation of superconductivity. The effects of the presence of suppressing additives in electrolyte, the thickness of Sn films, and the room temperature aging of deposited Sn films on the superconducting transition behavior are systematically studied. In addition, the crystallographic structure of electrodeposited Sn and its evolution along with aging time are characterized and are discussed in conjunction with the superconductivity behavior. The current work represents an important step towards the processing of technologically viable superconducting devices. 
    more » « less
  4. A systematic electrochemical study is carried out on electrolytes with superhigh concentrations of fructose. The effect of fructose concentration on the viscosity and conductivity of electrolyte are determined and analyzed using Walden rule and the theory of rate process. The diffusion rates of proton and cupric cation are calculated from the peak current in cyclic voltammogram on stationary electrode and the limiting current on rotating electrodes. Raman spectroscopy is used to characterize the hydrogen bond network in water and the effect of fructose concentration on such network. Rhenium deposition with different fructose concentrations is studied on rotating disc electrodes. X-ray fluorescence, X-ray diffraction, and four point probe measurements at cryogenic temperature are used to study the deposition rate, crystallographic structure, and superconductivity of film, respectively. 
    more » « less